Govt. College, Alewa (Jind)

Session: 2024-2025 (Even Semester) Lesson Plan

Name of the Teacher:Dr.MANJEET SINGH, ASSISTANT PROFESSOR

Subject:PHYSICS (Theory)

Class: B. Sc. 6th Sem.

Physics Paper: I (Solid State and Nano Physics)

Paper's Code: NPH06(I)

Max. Marks: 50(External Assessment: 40 Marks, Internal Assessment: 10 Marks)

Contact Hours Per Week: 2

Physics Paper: II (Atomic and Molecular Spectroscopy)

Paper's Code: NPH06(II)

Max. Marks: 50(External Assessment: 40 Marks, Internal Assessment: 10 Marks)

Contact Hours Per Week: 2

Sr.	Months	Dates	Topic
No.			
1	January	15-01-2025	Crystalline and glassy forms, liquid crystals, crystal structure, periodicity,
	2025	to	lattice and basis, crystal translational vectors and axes. Unit cell and Primitive
		31-01-2025	Cell, Winger Seitz primitive Cell, symmetry operations for a two dimensional
			crystal, Bravais lattices in two and three dimensions. Crystal planes and Miller
			indices, Interplaner spacing, Crystal structures of Zinc Sulphide, Sodium
			Chloride and Diamond, X-ray diffraction, Bragg's Law, experimental X-ray
			diffraction methods. K-space and reciprocal lattice and its physical significance,
			reciprocal lattice vectors, reciprocal lattice to a simple cubic lattice, b.c.c. and
			f.c.c.
2	February	01-02-2025	Historical introduction, Survey of superconductivity, Super conducting systems,
	2025	to	High Tc Super conductors, Isotopic Effect, Critical Magnetic Field, Meissner
		28-02-2025	Effect, London Theory and Pippards' equation, Classification of
			Superconductors (type I and Type II), BCS Theory of Superconductivity, Flux
			quantization, Josephson Effect (AC and DC), Practical Applications of
			superconductivity and their limitations, power application of superconductors.
			Definition, Length scale, Importance of Nano-scale and technology, History of
			Nanotechnology Benefits and challenges in molecular manufacturing.
			Molecular assembler conce Understanding advanced capabilities. Vision and
			objective of Nano-technology, Nanotechnology in different field, Automobile,
			Electronics, Nano-biotechnology, Materials, Medicine.
3	March	01-03-2025	Introduction of early observations, emission and absorption spectra, atomic
	2025	to	spectra, wave number, spectrum of Hydrogen atom in Balmer series, Bohr
		31-03-2025	atomic model(Bohr's postulates), spectra of Hydrogen atom, explanation of
			spectral series in Hydrogen atom, un-quantized statesand continuous spectra,
			spectral series in absorption spectra effect of nuclear motion on line spectra
			(correction of finite nuclear mass), variation in Rydberg constant due to finite
			mass, short comings of Bohr's theory, Wilson sommerfeld quantization rule,
			de-Broglie interpretation of Bohr quantization law, Bohr's corresponding
			principle, Sommerfeld's extension of Bohr's model, Sommerfeld relativistic
			correction, Short comings of Bohr-Sommerfeld theory, Vector atom model;
			space quantization, electron spin, coupling of orbital and spin angular

		1	
			momentum, spectroscopic terms and their notation, quantum numbers
			associated with vector atom model, transition probability and selection rules.
			Orbital magnetic dipole moment (Bohr megnaton), behavior of magnetic dipole
			in external magnetic field; Larmors' precession and theorem. Penetrating and
			Non-penetrating orbits, Penetrating orbits on the classical model; Quantum
			defect, spin orbit interaction energy of the single valance electron, spin orbit
			interaction for penetrating and non-penetrating orbits. quantum mechanical
			relativity correction, Hydrogen fine spectra,
4	April	01-04-2025	Main features of Alkali Spectra and their theoretical interpretation, term series
	2025	to	and limits, Rydeburg-Ritze combination principle. Absorption spectra of Alkali
		30-04-2025	atoms, observed doublet fine structure in the spectra of alkali metals and its
			Interpretation, Intensity rules for doublets, comparison of Alkali spectra and
			Hydrogen spectrum. Essential features of spectra of Alkaline-earth elements,
			Vector model for two valance electron atom: application of spectra, Coupling
			Schemes; LS or Russell – Saunders Coupling Scheme and JJ coupling scheme,
			Interaction energy in L-S coupling (sp, pd configuration), Lande interval rule,
			Pauli principal and periodic classification of the elements, Interaction energy in
			JJ Coupling(sp, pd configuration), equivalent and non-equivalent electrons,
5	May	01-05-2025	Two valance electron system-spectral terms of non-equivalent and equivalent
3	2025	01-05-2025 Onwards	
	2025	Onwards	electrons, comparison of spectral terms in L-S And J-J coupling. Hyperfine
			structure of spectral lines and its origin; isotope effect, nuclear spin. Paschen-
			Back effect of a single valence electron system, Weak field Stark effect of
			Hydrogen atom. General Considerations, Electronic States of Diatomic
			Molecules, Rotational Spectra (Far IR and Microwave Region), Vibrational
			Spectra (IR Region), Rotator Model of Diatomic Molecule, Raman Effect,
			Electronic Spectra.
			Revision
			Class Test

Dr. Manjeet Singh Assistant Professor of Physics